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SUMMARY

We consider regularized linear algebraic methods for the restoration of large images
(perhaps 1000 x 1000 pixels) derived from space-based surveillance systems. The
associated computational burdens are assessed. Methods which accelerate the restoration
process by exploiting structure within the imaging matrix are analyzed. It is shown that, if
relaxation of the support of the reconstruction to that of the original image can be tolerated,
a technique based on expansion of the imaging matrix to circulant form can be applied

which is significantly faster and makes much smaller demands on storage resources.
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1. The Discretized Problem

We wish to form an estimate of an object f, given the image g and imaging operator 4 .

We assume additive noise is present and write, symbolically,
g=A4f +n (1)

Typically, 4 is a strongly smoothing operator - for example, a convolution in the case of a
space-invariant point-spread function - and noise introduces a destabilizing effect on any
attempt at a solution. In the continuous form of the problem, equation (1) becomes a
Fredholm equation of the first kind, and a singular function analysis can be used’ to identify
the precise nature of this difficulty. In the discrete case, 4 is a matrix, f, g and n are
vectors, and the singular value decomposition (SVD) of A can be used in a similar way'.

We shall see that the SVD also provides an elegant technique for deriving a solution.

In the presence of noise, an exact solution to equation (1) is impossible to achieve. As a

A

means of choosing an approximation from the infinite set { f } of estimates, we might

require, for example, that the Euclidean distance between the image of the estimate and the

given image data be a minimum.

A 2

Thus we would minimize [Af-g

and obtain the normal equations
2

A"Af, =A"g ,

where A" is the Hermitian conjugate of A ; inversion of 4”4 (assuming that it has an
inverse) then yields the estimate f. . It can be shown, however, that this estimator is still
extremely sensitive to noise, small perturbations in the data causing large changes in the
solution. The problem is intrinsically ill-posed. It can be converted to a well-posed one by

the methods of regularization theory”. We add an ‘energy’ constraint ,
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combine it with the previous constraint, and minimize
L}

where f3, the regularization parameter, plays the role of a Lagrange multiplier. The solution

A 2

Af-¢g

b4

2
+pB
2

2

becomes

Fo=(a"4+ p1)" a"¢
or
fﬂ = A; g H

where A = (4%A+ pI )_1 A¥ is the regularized pseudoinverse of 4, by analogy with the

Moore-Penrose pseudoinverse’ 4*. The optimum value for S will depend on the noise level
and can be determined in one of several ways®’.

A+

; could be computed directly by forming A7A and carrying out the required matrix

inversion. This procedure loses accuracy, however, and SVD is the method of choice®. Let

A be an n x n matrix. (The formalism is easily extended to the general m x n case.) We

have

A=UzV" ,
where viu=viv=vwi =1,
and Z=diag (0,,....,0,) .
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The singular values {o;}are assumed to have been arranged in descending order of

magnitude:

0,20, 2..20,20
Then we find fs=VE,U"g |

+ . o
where I, =dia L g

SVD is, however, computationally expensive, involving O(10N®) operations for an NxN

matrix. A Matlab experiment on a 66 MHz 80486 PC produced the following results:

Time to Output Number of
A-Matrix compute SVD file operations
512x 512 11m 16s 6.3 Mb 1.33 Gflops

The A-matrix associated with a 23x23 image would be of approximately this size.
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2. Reducing the Computational Burden

In certain cases, the computational effort can be reduced significantly. For example, if the
point-spread function is stationary across the field of view and unchanging in time, and if

the image size does not vary, the SVD can be precomputed and stored.
The remaining (on-line) computation is

fs=4;8=VEU"g
an O(N°) procedure, where N is the number of pixels in g.

The matrix-vector multiplication effort can be further reduced by exploiting structure in 4

(and hence in 47 ).

For stationary point-spread function and equal sampling intervals in image g and
reconstruction f,, A is Toeplitz (i.e., A=[aj_,.]) in the one-dimensional case. In two

dimensions, image and reconstruction must be reconfigured from matrices into vectors in
some way; for example, by column-wise mapping. A then becomes block Toeplitz with

Toeplitz blocks, consisting of Toeplitz submatrices arranged within 4 in Toeplitz fashion.

Figure 1 is a Matlab meshplot of an 18 x 18 test object consisting entirely of 1's or 0's
located at the intersections of the grid lines. The 8 x 8 truncated Gaussian point-spread
function is shown in Figure 2. The blurred image of Figure 3 obtained with this point-
spread function then occupies 25 x 25 pixels; note that no noise has been added to this
image. The 625 x 324 imaging matrix A, which relates the column-mapped object and
image vectors, is shown in Figure 4 in perspective and in contour form in Figure 5. Its

Toeplitz symmetries are clearly discernible.
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Figure 1




Figure 2




Figure 3
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imaging matrix A:

Figure §

625x324 elements
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Figure 6

deconvolution matrix obtained from svd of A
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Figure 7

deconvolution matrix obtained from svd of A
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3. Exploiting Symmetries

Symmetries in Ay, deriving from the Toeplitz properties of A, are clearly evident in
Figure 6 and 7. Such Toeplitz structure can be exploited using the concept of displacement
rank’. The displacement rank of a general matrix B is the smallest number ¢ for which we

can write

B=2I(x,) Uly) .

where L and U are lower and upper and triangular Toeplitz matrices. The x, and y, can
be obtained by SVD of the 'displaced difference’ B-ZBZ" of the matrix, where Z is the

downshift matrix

000..00 |
100..00
010..00
000..10

For Ay, we expand the SVD of the displaced difference in the following form®:
45 - ZA4,Z" = kzz:lskpkqfa
where the p, and g, are the left and right orthonormal singular vectors and the singular

values s, are indexed in decreasing order. This expression leads to the following

displacement-rank expansion for Ay :

4; = 2 5, L(p)U(q:)
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Here L(p,) denotes a lower Toeplitz matrix with first column p, , and  (q,) an upper

Toeplitz matrix with first row ¢;”.

This expansion enables the matrix-vector product A; g to be performed by FFT methods,

thus conferring a potential gain in speed and storage requirements. However, an expensive
SVD is required to find the p, and g, and in practice o. may not be an especially small

number.

We can achieve much greater computational efficiency, and also develop a procedure with
wide applicability, by keeping the pixel sizes in the image and reconstruction spaces equal

and by allowing the support of the reconstruction to expand to that of the image.

A can then be made a circulant’, in which the rows and columns are cyclical, and in which

any one column (or row) contains all the information needed to construct the complete
matrix A. The elements of the circulant of order » are related by the equation 4= [a j_,.+1] ,

where the subscript is taken modulo 7. Its key property for the present purpose is that the

Fourier transform diagonalizes a circulant. We can write

A=FHAF ,

1 1 1 1
1 w w? w!
o 1 1 WZ w4 w2(n—1) .
where F7 = T , w=expli2z / n)
1 Wl w2 wo
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and A = diag(4,...,4,) -

Then from s :(AHA+ ,BI)_IAHg
we find fs =F%A, Fg
( A *
where A, =diag| ....—5—,...
= i "+ p

We now need only 1-D FFTs. The 4 , are given by the FFT of the first column of 4 and

the reconstructed image is computed as

1 . R
fﬁ = T;W(Apﬁ(g)) s
which is an O(3n)log, n procedure.

The penalty is that the support of f, has been relaxed - noise can leak into 'zero' areas. For

images much larger than the effective point-spread function, however, this is not a serious

problem.

Figures 9 and 10 show the circulant form of the imaging matrix for the same point-spread
function and image size as in the earlier example, and should be compared with Figures 4
and 5. The reconstruction now expands to 25 x 25 pixels. It can easily be shown that the

deconvolution matrix Ay, displayed in Figures 11 and 12, is also a circulant, although much

less sparse. In the noiseless case, the reconstruction shown in Figure 13 is obtained with
B =0. When Gaussian noise is added to the image with a standard deviation of 10°

relative to the local pixel value, the reconstruction is as shown in Figure 14. At a noise
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level of 107, the object is no longer recognizable, see Figure 15. By setting the
regularization parameter equal to 10, however, the image is acceptably restored, as can be
seen in Figure 16. Note also that the leakage of energy outside the true object support is

now very limited.
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circulant form of

Figure 10
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Figure 11
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Figure 12

circulant form of deconvolution matrix: 625x625 elements
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Figure 13

18x18 object reconstructed
using circulant properties of
imaging matrix: unregularized
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Figure 14

18x18 object reconstructed
by circulant: noise level 1e-6
unregularized
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Figure 15




Figure 16

18x18 ob ject reconstructed
by circulant: noise level 1le-5
beta = 1le—10
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For a space-variant point-spread function, direct expansion of 4 to circulant form is no
longer possible. However, if variation across the image is small, a displacement-rank

expansion of A4 into sums of products of upper triangular Toeplitz and circulant matrices

can be made'®:

[~4

A; =C,+ ZL(xk) CH(yk)

2 k=1

The x, and y, are now obtained by SVD of the cyclic displacement of Ay
Ay —~EA;E" = Lxyy

where E is the cyclic downshift matrix

(000..01]
100..00
010..00

1000..10]

Once again, however, the computationally intensive SVD is required. In addition, o is not

necessarily a small number.
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4. Conclusions

For space-invariant point-spread functions and equal sampling in image and reconstruction
spaces, expansion of the imaging matrix A to circulant form is straight-forward, providing
immediate access to one-dimensional FFT construction techniques and greatly enhanced
efficiency through reduced computational effort and storage requirements. The matrix

representing the image is vectorized by a simple column-wise (or row-wise) mapping.

The penalty of a circulant expansion is loss of a smaller support in reconstruction space.
However, for typical images, using, for example, a CCD array, where the point-spread

function is generally of much smaller extent than the image, this is not a serious limitation.

If the point-spread function is not space-invariant, or if sampling rates differ in image and
reconstruction, the SVD is the preferred means for synthesis of the deconvolution matrix.
For this case, faster SVD procedures would be a valuable development. If the accuracy and
reliability afforded by the SVD are not of paramount importance, fast approximate methods,
based, for example, on a separable approximation to the point-spread function, may be

adequate.
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Superresolution Algorithms for a Modified Hopfield
Neural Network

John B. Abbiss, Bryan J. Brames, and M. A. Fiddy, Member, IEEE

Abstract—The purpose of this paper is to describe the imple-
mentation of a superresolution (or spectral extrapolation) pro-
cedure on a neural network, based on the Hopfield model. This
was first proposed by Abbiss et al. [1]. We show the computa-
tional advantages and disadvantages of such an approach for

different coding schemes and for networks consisting of very

simple two state elements as well as those made up of more
complex nodes capable of representing a continuum. With the
appropriate hardware, we show that there is a computational
advantage in using the Hopfield architecture over some alter-
native methods for computing the same solution. We also dis-
cuss the relationship between a particular mode of operation of
the neural network and the regularized Gerchberg-Papoulis
algorithm. '

I. INTRODUCTION

HERE are several models of neural networks, each of

which has a structure based loosely on our view of
biological nervous system components [2]. A neural net-
work architecture is one consisting of a very large number
of simple processing elements densely interconnected by
a set of weighted links. Each processing element updates
its state by comparing the sum of its inputs with a pre-
scribed threshold. The study of the properties of neural
networks is a subject still somewhat in its infancy, and
current hardware limitations reduce their practical im-
pact. Indeed, it has been suggested by Anderson and Ro-
senfeld [3] that they may not become useful until inex-
pensive special purpose parallel hardware is available.
Should that hardware be available, the question remains
as to how one would make best use of a neural computer;
i.e., how one should program or ‘‘train’’ it to perform the
tasks required. The hope is that some problems for which
it is difficult to find satisfactory algorithmic solutions
might be amenable to this kind of computing architecture,
which can organize itself and learn what it is expected to
accomplish. :

One anticipated use of neural networks is in autoasso-
ciative memory and in image (or signal) classification,
recognition or understanding applications; these are ap-
plications that we believe the human brain is particularly
good at while current algorithms implemented largely on

Manuscript received April 25, 1989; revised August 23, 1990. This work
was supported in part by the SDIO/IST and managed by ONR.

J. B. Abbiss and B. J. Brames are with Spectron Development Labora-
tories, Inc., Costa Mesa, CA 92626.

M. A. Fiddy is with the Department of Electrical Engineering, Univer-
sity of Lowell, Lowell, MA 01854.

IEEE Log Number 9144725.

serial machines still leave much to be desired. For most
neural networks, their learning or restoration capabilities
can be expressed in terms of the minimization of some
appropriate energy or cost function. One of the objectives
of this paper is to take an established algorithm in image
reconstruction and identify those aspects of it that can be
related to the programming requirements that would be
necessary for implementation on a Hopfield neural com-
puter. From the analysis of such a network applied to solve
a problem for which the cost function is well defined, one
might be able to assess their use for the solution of a wider
class of optimization problems.

The Hopfield network is a fully connected network in
the sense that any one of the processing elements is con-
nected to every other one. This contrasts with layered net-
works, such as a multilayered perceptron (MLP), in which
processing elements are arranged with connections only
between neighboring layers. This difference in topology
is accompanied by differences in the thresholding func-
tions and in the procedures to find the connection
strengths. The Hopfield network operates iteratively; the
connection strengths are assigned and specify a cost func-
tion which the iterative procedure minimizes. The MLP
is a one-pass network once the connection strengths have
been ‘‘learned’’ by the minimization of an error function
which quantifies the difference between the current and
desired output states.

It was pointed out by Jau er al. [4] that some iterating
image restoration processes are mathematically very sim-
ilar to autoassociative memory; indeed if the input infor-
mation is incomplete, it can be considered as a key pattern
to an associative memory. Since the approach to image
restoration presented here was first proposed [1], there
have been other related studies which we mention here.
Zhou et al. [5] considered an energy function identical to
(6) in order to specify network interconnection strengths.
Their application was the restoration of grey level images
degraded by a shift invariant FIR blur function and addi-
tive noise. Grey level information was coded by a simple
sum of binary elements and the network was serially up-
dated with a stochastic thresholding rule to avoid getting
trapped in local minima of the energy function. Jang et
al. [6] utilized the optimization properties of the Hopfield
network in order to estimate a matrix inverse. This is
clearly important in image restoration problems, as indi-
cated by (8). Full grey level representation is assumed and

1053-587X/91/0700-1516%$01.00 © 1991 IEEE
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a differential mode of implementation applied; they point
out that this method is similar to a steepest descent method
but with a nonlinear thresholding step at each iteration.
Bai and Farhat [7] also considered a cost function similar
to that in (6) to recover images from limited Fourier data.
In their approach there was an additional constraint on the
norm of the derivative of the estimate as well as on the
norm of the estimate itself. The increment added to the
current estimate was weighted by a “‘gain’” factor prior
to thresholding, which was chosen to ensure that the net-
work energy function decreased at each step. Their recon-
structions showed advantages for low-signal-to-noise ra-
tio situations and are being implemented on optoelec-
tronic hardware. Winters [8] considers a norm minimi-
zation as expressed by (6) but without any explicit regu-
larization term included. The minimization of his cost
function is achieved by the penalty method which requires
that a large positive value is added to the cost function,
wherever a nonlinear inequality constraint is not satisfied.
An adaptive penalty function allows one to avoid local
minima and this complete procedure can be mapped onto
the Hopfield energy function. Results showed that the re-
constructions were robust against noise and could be im-
plemented in microseconds on an analog electronic net-
work, as compared to several hours on a minicomputer.

Using a Hopfield network, our interest is in an appli-
cation for which a solution state evolves through the min-
imization of some specific cost or energy function. Once
the energy function is defined, one can determine the ap-
propriate connection strengths in order that the energy
function associated with the network is the same as that
of the problem under consideration. A key feature of a net
of this type is its construction from a set of simple pro-
cessors, each of whose states is determined by a thresh-
olding operation applied to a sum of weighted inputs from
other processors or nodes. The properties of the network
as a whole are determined by the thresholding function
used, and by the pattern and strengths of the connections
between the processing elements.

II. THE HopPFIELD NETWORK WITH TwO STATE
ELEMENTS: THEORETICAL FRAMEWORK

The Hopfield neural model [9], [10] allows one to spec-
ify a set of desired memories as minima of a configura-
tional energy of the network. We assume that the network
consists of N processing elements each of which has two
states and each of which has a thresholding operator that
determines the states of the element from the total input
to that element.

Given an initial starting configuration or state of the
network, each processor or “‘neuron’’ updates its state ac-
cording to a threshold rule of the form

N
if 2 T,v; > 0thenv; = 1; otherwise v; = —1 (1)
j=1

/g

1517

where the elements of the connection matrix 7 are formed
according to the rule

M
T,-,-zglvrvf G,j=12""N) 2)
and the v# are the elements of the M memory vectors, vh,
to be stored. The v can take the values +1, and it is
assumed that the diagonal term, Tj;, is zero in the Hopfield
model.

This thresholding rule can be applied in series (asyn-
chronously) or in parallel (synchronously). In the serial
mode, the rule is applied sequentially to the nodes of the
network, the state of the network being updated after each
operation. In the parallel mode, the current network state
remains unchanged until the thresholding operation has
been applied to every node. The configurational energy
function for the network has the form [9], [10]

N N :
E=—1 .Zl 21 T vv; = —% v Ty (3)
i=1 =

(1)

where superscript T denotes transpose. Serial threshold-
ing will always minimize this energy function, provided
that the T); are nonnegative. If M is sufficiently small, this
state will correspond to the memory closest in Hamming
distance to the state in which the network was started.
Parallel thresholding results in either convergence to a
stable state or oscillation between two states [11].

This iterative scheme can be expressed more concisely
and modified to permit biasing of the neuron inputs in the
following manner. We let the state of the network after
the nth iteration be described by the N element vector

0" = U(Tv™ + b)

where U is the threshold operation, 7 denotes the matrix
with elements 7j;, a superscript denotes iteration number,
and b is the bias vector. The bias vector incorporates
boundary conditions such as image data; it effectively
shifts the decision threshold for each element. In this case
the energy function minimized by the network is of the

form [10]
E=-1/20v"Tv — b'o. 4)

The change in energy for a change in the state of one
neural element from v, to v, + Ay, is

AE, = —Ap[(Tv + by, + 3 TuAvl.

Taking T}, to be zero ensures that the change in energy is
always negative, since the term in the brackets above then
has the same sign as Av,. If T, is nonzero, the term in
the bracket will have the same sign as A, provided T}, is
positive, and then E is guaranteed to reduce; the conse-
quences of varying T, were explored in an earlier publi-
cation and verify the expected behavior {12]. If two (or
more) neurons change state simultaneously, the change in
E contains terms involving products of the form —1/2
T, Av,Av, (or these plus higher order terms if more neu-
rons change), the sign of which can vary.
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The two state representation is too limited for a one-to-
one mapping between elements and signal or image sam-
ples, in most cases. However, these simple elements can
be taken in groups to represent grey levels through a va-
riety of coding schemes. Alternatively, either analog or
more complex digital processing elements could be used
to directly represent a grey level.

III. THE SUPERRESOLUTION PROBLEM

There are many applications that require the restoration
of a signal or image from a limited discrete data set; for
example, samples of the spectrum of a function, or of its
low or band-pass filtered image. An important a priori
assumption for work in super resolution is the fact that
most objects to be imaged are of compact support. This
leads to the well-known result that their spectra are band-
limited functions. In principle, therefore, one might hope
to extend limited spectral data by means of analytic con-
tinuation. This procedure is notoriously unstable in the
presence of noise and does not provide a practical solution
to the problem. One has infinite freedom in interpolating
and extrapolating limited sampled data; hence, one is
forced to approach super resolution from an optimization
point of view [13]. The best that one can hope to achieve
is the specification of a cost or energy function which pos-
sesses a unique minimum and is designed to incorporate
whatever constraints and a priori knowledge might be
available to help limit the set of possible solutions to the
problem, while retaining desirable and necessary solution
characteristics. Examples of constraints include data con-

sistency, support consistency and, perhaps, positivity.

The objective of the superresolution process is to obtain
a final image that has a higher spectral or spatial fre-
quency content than the original data set, as a direct con-
sequence of incorporating the prior knowledge available
into the cost function. It is a matter of taste, to a large
extent, how one designs a cost function in order to obtain
a desirable solution to the problem; i.e., a superresolved
signal or image with acceptable properties. The super-
resolution problem is thus transformed into one of deter-
mining the (global) extremum of a cost function on the
assumption that this solution is optimum.

One of the early successes of a neural network was to
find a good approximation to the traveling salesman op-
timization problem [14]. The superresolution optimiza-
tion problem can be mapped onto a neural network in two
distinct ways. One is to train network using a data base
of superresolved images [15]-{17], the other is to relate
the cost function associated with a given network to the
chosen superresolution cost function. It is the latter ap-
proach that we adopt here.

IV. SUPERRESOLUTION AND SPECTRAL ESTIMATION

Most signal or image recovery problems can be de-
scribed by linear equations of the form

gx) = SA(x, nf(y) dy
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where 4 is the system spread function or the Fourier trans-
form kernel, for example. The interpretation of the data
g(x) to obtain information about the object f(y) requires
the solution of a linear inverse problem. This is equivalent
to finding the solution of a Fredholm integral equation of
the first kind. It is well known that small fluctuations in
the data g(x) can lead to very large fluctuations in the es-
timate of the unknown function f(y). This is a manifes-
tation of the ill-posed nature of the problem (the inverse
of the operator 4 is not generally continuous) and some
degree of regularization is required in order to determine
stable and meaningful solutions. One usually proceeds by
assuming that the desired solution belongs to the space F
of (possibly weighted) L? functions, the regularization re-
stricting that solution to conform to any a priori knowl-
edge available about the object whose énhanced image is
sought.

In practice, the solution is determined from a finite set
of samples of g(x), and the data vector g is expressed by

g=Af+n

where A is the imaging operator and n represents an ad-
ditive noise component; A4 explicitly contains the support
constraint of f, which is assumed to be known or esti-
mated a priori. These limited data can be regarded as a
noisy finite set of bounded linear functionals of f.

A data-consistent solution exists, however, which is a
solution of minimum norm. This solution is the data-con-
sistent { which minimizes || g||2, where || || denotes norm.

The solution to this minimization problem can be writ-
ten

N
£= i§1 (&, Ui)ui/ai (5)

where N is the number of image data points and the «;, u;
and v, are the singular values, singular functions, and sin-
gular vectors, respectively, pertaining to the operator A:
Au; = oyv; A¥v; = aql;. The singular values tend to zero
as i increases, leading to an instability in the estimator. If
the first N; < N singular values are dominant, then the
remainder may be neglected, but only at the expense of
loss of resolution in §.

Thus, this solution is ill-conditioned but stability can
be restored by relaxing data consistency; hence, we min-
imize the cost function

E=lag - gl + 8lg I (6)

The estimate is

M=z

{= 2 (g, vywe/(ef + B) 0

]

i=1

where the regularization parameter 3 is chosen to achieve
a compromise between resolution and stability, and usu-
ally requires some adjustment in order to establish its op-
timal value. As 8 tends to zero, the solution becomes more
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data consistent. The; minimizer of this cost function can
be computed directly in matrix form, namely,

f=1[4%4 + pN"'a*g ®)

where, for a real-valued matrix, A* becomes A7, and I
represents the identity matrix.

An alternative approach to estimating the object is to
consider the minimization of the cost function || f — { ?
using a trigonometric polynomial of the form [13]

N
b= 2 didy

where the ¢, form a basis in the data space F and the
optimal d, satisfy

N
m§1 [(d)m’ ¢n)F + Banm]dm = Gn (9)

and the G, are Fourier data corresponding to the low-pass
filtered image g.

It is worth pointing out that in the space F that incor-
porates the known support constraint for the function to
be restored, the three solutions given by (7)-(9) are equiv-
alent; expression (9) can be obtained from expression (8)
[18]. Each method for solution is more or less computa-
tionally the same in that each requires ~ O(N°) multipli-
cations; this was pointed out earlier in [1].

We note that expression (7) requires on the order of

CN?* multiplications, where the overhead C is large by
comparison with the other methods. However, a primary
concern is the ease with which the regularization param-
eter 8 can be varied; this can be done at the cost of O(N?)
multiplications for (7).

V. IMPLEMENTATION ON A NEURAL NETWORK

We will now show how a superresolution algorithm
equivalent to the previously described approaches can be
defined on a Hopfield neural network. Several issues must
be addressed. First, it is necessary to define the connec-
tion matrix from the cost function. For some problems
this cannot be accomplished without performing more
calculations than are required for a more conventional so-
lution to the problem. The latter consideration was noted
by Takeda and Goodman [19]. Thus, the computational
load or complexity must be considered in deciding the
merits of a neural network solution to this problem.

Other issues which must be addressed center on modi-
fications of Hopfield’s formulation to satisfy our require-
ments. Hopfield ensures that the network will converge
by arbitrarily setting the diagonal of the connection matrix
to zero. This is unacceptable, because it shifts the abso-
lute energy minimum of the network from the minimum
of (6). Moreover, while a suitable network can be con-
structed from two-state elements, one often requires that
the reconstruction be represented over at least a set of grey
levels. Thus, it may be necessary to combine a number of
neural elements to represent a reconstruction pixel. The
method of coding the grey levels depends on the com-
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plexity of the elements, i.e., whether they can only take
on two states, a bounded continuum of values such as 0
< v; = 1 (‘‘graded neurons’’), or an (effectively) un-
bounded continuum. Granularity of the representation will
affect the convergence properties of the network; coarsely
quantized systems can converge to local energy minima,
yielding less than optimal reconstructions.

We shall first demonstrate the formal mapping of a
superresolution algorithm onto a Hopfield network. The
technique will then be extended to fully address the sec-
ond and third issues on a two-state network. We will
briefly examine the advantages of more finely quantized
systems, and finally discuss the relation between parallel
thresholding and a regularized form of the well-known
Gerchberg-Papoulis spectral extrapolation algorithm
[20]-[22].

Let us represent the current estimate by the state of the
network v. We can rewrite (6) as

E=0v"4"4v - 2074"g + g'g + Bovw.

Comparing this expression for E with that of the Hopfield
network, (4), gives

T= —2(4"4 + 8D
b =24"g

where  is the identity matrix, and the g’g term can be
ignored, since it represents a total offset for E.

Thus, superresolution can be mapped simply and di-
rectly onto a Hopfield network. The connection matrix is
formed from the imaging operator matrix, which contrib-
utes information about the imaging system, and the
regularization parameter 8, which sets a bound on the
norm of the final estimate. The available data g contribute
only to the bias vector b.

For serial operation, the change in energy due to a
change A, is

AEk -

(10)

—Ay[(To + b), + 5 Ty A (11)
Convergence to a minimum is guaranteed if the expres-
sion in braces always has the same sign as A v,. This can
be ensured by altering the diagonal of T to zero; however,
such a change is equivalent to choosing an arbitrary value
for 8. This is not acceptable, .since the regularization pa-
rameter should be chosen to reflect the noise in the data
and to obtain an optimum reconstruction, not to ensure
convergence of the algorithm.

VI. SUPERRESOLUTION ON A TwO-STATE NETWORK

In this section we will modify the Hopfield formulation
so that the energy minimum of the network will coincide
with that of (6), while still decreasing the energy with
each change in the state vector. We shall find that this is
possible by introducing a two-level threshold in place of
the usual single-level one. In addition, we will incorpo-
rate a generalized grey scale mapping which describes lin-
ear transformations of a state vector v into a vector w hav-
ing grey levels. We write this as w = Sv, where S could
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be a mapping from an N element vector, each of whose
elements can take the values 0 or 1, to an L-element vec-
tor (L = N) whose elements can take a wider range of
values. For example, if S represents a base-2 mapping,
each element of » can represent a power of 2, giving a
range of 2V/% values for each element of w. The range of
v need not be limited to {0, 1}: we use this for the pur-
pose of illustration. Other coding schemes are possible,
such as clustering or bit-density coding.

The expression for the energy is now

E=aw - gl* + glwl*.

Suppose the grey-level vector w is perturbed by some
amount Aw. The difference in energy between states is

AE = 2AwW{(A"A + BDw — ATg + 1 (ATA + BI)Aw}

(12)
or, in terms of the neural state vector v,
AE = 2A0"[ST(A"A + ISy — §TATg
+ 187474 + BDSAv). (13)

It should be emphasized that (13) contains no assump-
tion about the range of values of v or of the updating mode
of the network. A restriction to two states reflects the de-
sire to use a large number of simple binary processing
elements in neural architectures.

We now present a procedure which ensures that the

change in energy expressed by (12) and (13) always de-
creases, provided serial thresholding is adopted. For a
change Ay, the change in energy A E; of the network is
given by (11), with the following definitions for T and b:

T = —28"(4"4 + BDS
b =28"A"g.
The grey-scale mappings we are considering associate
a specific neuron with one and only one image pixel.
Hence, the columns of S each contain only one element,

and it is not difficult to show that the diagonal elements
of T take the form

Tu = —2S5(A™A + BI); (14)

where §j, is the nonzero element of the kth column of S.
Since the diagonal elements of ATA are positive, and  is
some positive quantity, T}, is always negative. Hence, we
can rewrite (13) in the form

AE, = —Au{(Tv + by — 5 |TulAvd.  (15)

Thus, AE, will be negative provided (Az)* < A A,

where

Ay (Tv + b),

|l
the maximum decrease in energy occurring when

Ay = A (16)
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Thus, we require that | Av,| < |A;| and sgn (Av,) = sgn
(Ap). For a binary network, where v, € {0, 1}, we then
obtain the following rule to ensure that the network en-
ergy does not increase:

1 forA, > 1
v’ for |A] < 1

0 forAk< —-1.

ot =

We consider next the operation of a nonbinary network.

VII. SUPERRESOLUTION ON A NONBINARY NETWORK

The restriction of the state vector » to binary values
permitted the simplest possible processing elements to be
used in a neural architecture. With more complex proces-
sors this simple representation is unnecessary and ineffi-
cient: the optimal coding scheme is intimately related to
the nature of the available hardware.

A disadvantage of simple two-level elements is that they
can give a coarsely quantized representation in recon-
struction space which leads to the creation of local energy
minima. There is still only one absolute energy minimum,
but the network may converge to a local minimum of
higher energy. It should be recognized that this behavior
also occurs with a -single level threshold and a zero-
diagonal T matrix, and the resulting reconstructions are
sometimes called *‘spurious stored states.”” A typical so-
lution of this type is shown in Fig. 1(c) for a network of
90 two-level elements; a 6-b coding scheme yields 15
points in the reconstruction. Whether such a reconstruc-
tion is of acceptable quality is difficult to predict, and a
function of the needs of the user. This difficulty can be
overcome by using elements which can take on values over
a continuum, such as 0 < v, < 1 (Fig. 1(e), (f)). These
elements are similar to the graded neurons employed by
Hopfield in a differential network [10].

We shall now examine the behavior of an asynchronous
network composed of elements which can take on a con-
tinuum of values. Because | A ;| is no longer fixed there
is no need for a threshold/decision operator; we will sim-
ply use the value of Aw, which yields the greatest de-
crease in energy. :

It was noted above that the maximum decrease in en-
ergy occurs when

Avk = Ak/2

In addition, |A,| represents an upper bound on | Ay|. As
one approaches the solution, (Tv + b), approaches zero,
so this upper bound decreases. For networks with a fixed
|Avy| (e.g., +1 for all k), one would expect |A,| even-
tually to be smaller than | A/, so no changes can be made
to reduce the energy, even though the network is not yet
at the global minimum. Thus, the fixed step methods will
generally be limited to some outer neighborhood of the
global energy minimum (although one might arrive at the
minimum).
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Fig. 1. The line types used are solid for an image or a neural network reconstruction; dashed for the object; and dot-dashed for
the algebraic (SVD) reconstruction. (a) Object and incoherent image. Ninety two-state {0, 1} elements are mapped with a 6-b
base 2 scheme to 15 pixels in the object. (b) The point-spread function of the imaging system (sinc?). (c) Network using two-
state neurons converges to a local energy minimum after 5 cyctes, 8 = 1075, (d) After 5 cycles using 90 graded neurons the
network has not converged, but a good estimate of the object has emerged, 8 = 1075, () Object and image containing 5%
Gaussian additive noise. (f) Neural reconstruction from (e) after 50 cycles, B = 107*". Note that it is nearly indistinguishable

from the SVD result.

However, if we adopt graded neurons it is still possible
to use very simple elements, yet circumvent the finite step
limitation. Since these elements can take on a continuum
of values between two limits, the energy is forced to de-
crease at each step. A serially threshold network, con-
structed from these elements can therefore reach the global
energy minimum after a sufficient number of cycles. One
could also dispense with the coding scheme, and use a
smaller number of more complex elements.

We would like to operate the network in the synchro-
nous mode to make efficient use of the network’s paral-
lelism. If the kth neuron changes by Aw;

wi D = w + Awy

where convergence is assured provided that the conditions
of Section VI are met.
A regularized form of the Gerchberg-Papoulis algo-
rithm reads [20]-[22]
w D = ATg + [(1 = B — ATA]W"

=w® + (Tw™ + b).

Thus, if
Aw, = (Tw™ + by,

parallel operation of the network will result in a compu-
tation which is identical to the regularized Gerchberg-Pa-
poulis algorithm. Since the latter always converges [22],
this choice for the Aw, must always be possible. Optimal
selection of the A w, to accelerate convergence of the net-
work in the parallel mode is under investigation.

VIII. CompuTATIONAL COMPLEXITY OF NEURAL
ALGORITHM

The computational complexity associated with image
reconstruction or superresolution using the singular value
decomposition of 4 to solve (8), and using the neural net-
work approach, has been examined for one-dimensional
images (Table I). The computational load associated with
the neural network is independent of whether the thresh-
olding is serial or parallel, although the actual computa-
tional time is obviously less for parallel thresholding. The
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TABLE I
THE NUMBER OF OPERATIONS REQUIRED FOR SUPERRESOLUTION BY SVD INVERSION AND BY A NEURAL
OPTIMIZATION ARE LISTED FOR THE TOTAL CALCULATION, AND FOR UPDATING EITHER THE IMAGE OR THE
REGULARIZATION PARAMETER

Requirement Operation SVD Neural

New 8 Mults N + N KN? + (K + )N
Adds N? KN? + (K + )N
Divs N N

New image Mults 2N? + N (K+ DN?2+ (K + DN
Adds 2N? (K + )N? + KN
Divs N N

Total operations Mults I5N® + 3N? + 2N N®+ (K+ DN* + (K + DN
Adds N? N>+ KN? + KN
Divs N N

number of additions, multiplications, and divisions for
each technique are listed in Table I for three situations.
The first row gives the number of calculations needed for
a new value of the regularization parameter 3; the neural
network has a disadvantage in this case because it must
generally run for some K iterations. The second row gives
the computational cost involved in updating the input im-
age data vector g. The neural network once again is at
somewhat of a disadvantage. However, by examining the
total number of operations from the beginning, one can
see that the neural approach is substantially more efficient
because it calculates a matrix product once without the
overhead associated with singular value decomposition;
numerical experiments using a microcomputer indicate
that the number of operations grows as 15N 3 for an N
point image. This is clearly increasingly significant for
larger images.

IX. DiscussioN AND CONCLUSIONS

Neural network solutions to image restoration problems
are, therefore, competitive with, but not necessarily bet-
ter than, more traditional methods for solving the problem
(see also [22]). We have shown that both binary and non-
binary image reconstruction algorithms can be imple-
mented on very similar neural architectures. The nonbi-
nary case can be based upon network elements which take

discrete (typically two-state) or continuous values. In the -

present application, the diagonal of the connection matrix
is nonzero and, for the discrete element case, the crucial
thresholding step was modified in order to ensure that the
energy of the network decreases at each step; the thresh-
olding step is unnecessary for the continuous case.

Thus, convergence to a minimum of the energy func-
tion is guaranteed for the both the discrete and continu-
ous-element networks. However, this minimum is unique
only in the continuous case, since discretization of the
element states introduces local minima. Convergence has
been demonstrated in this paper only for the case of serial
thresholding; for parallel thresholding in the continuous
case, the computation reduces to the regularized Gerch-
berg-Papoulis algorithm for a particular choice of the in-
crements in the states of the network elements.
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Restoration of sub-pixel detail using the regularized pseudo-inverse of the imaging operator
J. B. Abbiss and B. J. Brames

TITAN SPECTRON Division
3535 Hyland Avenue
Costa Mesa, California 92626

ABSTRACT

We present an analysis and computational results relating to the regularized restoration of subpixel information from
undersampled data. The method makes use of a small set of images in various stages of defocus. An iterative implementation
permits the incorporation of a non-negativity constraint. The problem we consider is fundamentally under-determined, but
useful results can be obtained in reasonably low noise conditions.

1. INTRODUCTION

The investigations discussed here form part of a program whose subject is the enhancement of images obtained from space-
based remote sensors. For the present purpose, these images are assumed to consist of quantized data from a fixed two-
dimensional set of sensors, such as a CCD array. Typically for these arrays, the Airy disc is smaller than one pixel. Thus, for
reasonably fast and well-corrected optics, the conventional limit on system resolution is likely to be the result of the spatial
sampling associated with the pixel size; i.e., the integration of the light energy in the image over the area represented by each
pixel.

For clarity, we consider the case of one-dimensional imaging with an incoherent source. Let the system point spread function
(psf) be represented by the continuous imaging operator L . Then, for an isoplanatic system in the absence of noise, the
image g of an object f is given by the convolution

g(y) = J Lix-y) fx) dx 1)

where S is the support of f . The output of the kth detector (pixel), extending from Yy t0 Yy, 18

Yier
& = -rYk a(y) dy
Y+
= -[Yk dy .[s L(x - y) f(x) dx

Interchanging the order of integration (which is certainly permissible with the physical functions considered here) and making
the definition

Y1
a0 = [y La-yay,

we obtain for the pixel-integrated image

g = J-s a(x) fx) dx, k=1,2,-, K 2)
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We now discretize the object into a set {f;,j=1, 2 -, J} over equal intervals and write, as an approximation,

J

g = Zl akjf}, k=1,2,-,K 3)
j=

where ay; is the integral of a(x) over the j interval. In matrix form, equation (3) can be written
g = Af
where A isa K xJ matrix.

Since the a;; can be determined from the system psf and the pixel array structure, the deconvolution problem represented by
equation (3) can, in principle, be solved and the set {f;} reconstructed approximately from an equal set of measurements of
the gy.

In practice, the restoration problem is made much more difficult because of background and intrinsic noise, array
imperfections and errors or uncertainties in the knowledge of the optical properties of the system. When pixel integration is
over a significant part of the system psf, achieving even a modest degree of enhancement, using a single image, poses
intractable difficulties in the presence of these perturbations. However, the necessary additional information can be derived
from multiple differing images of the given object. After a brief discussion of the characteristics of the inverse problem
represented by equation (3), we shall give a detailed description of a specific method for acquiring this information.

2. REGULARIZED IMAGE RESTORATION

There are many applications that require the restoration of a signal or image from a limited discrete data set; for example,
samples of the spatial or temporal spectrum, or of the object's low or band-pass filtered image. An important a priori
assumption in image restoration is that the object or objects are of compact support. This leads to the well-known result that
their spectra are bandlimited functions. In principle, therefore, one might hope to extend limited spectral data by means of
analytic continuation, and then, by Fourier transformation, obtain an enhanced image. This procedure is notoriously unstable
in the presence of noise and does not provide a practical solution to the problem.

This central difficulty can be expressed in another way. Most signal or image recovery problems can be described by linear
equations of the form

gx) = | Axy) f(y) dy

where A is the system point spread function or the Fourier transform kernel, for example. The interpretation of the data g(x)
to obtain information about the object f(y) requires the solution of a linear inverse problem. This is equivalent to finding the
solution of a Fredholm integral equation of the first kind. It is well-known in such a case that small fluctuations in the data
g(x) can lead to very large fluctuations in the estimate of the unknown function f(y). This is a manifestation of the ill-posed
nature of the problem (the inverse operator is unbounded) and some method of stabilization is needed to determine useful
solutions.

The problem of a lack of continuous dependence on the data can be overcome by one of the various techniques of
regularization {1, 2]. Essentially, the ill-posed problem is replaced by a related well-posed one, chosen to be physically
meaningful and to possess the necessary properties of convergence and stability. Thus we may change the concept of a
solution, or the Hilbert spaces of which the object and image are elements, or their topologies, or the operator itself. The
technique we shall use belongs to the last category.

We impose physically reasonable constraints on the permitted solutions. If € is a measure in the norm sense of the noise in
the image (norm in the appropriate Hilbert space is denoted by [ |H) and if C is some constraint operator with E a
known bound, we shall require that all possible reconstructions f satisfy
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llg-Afllg<e and |l CPIIg<E

C may be used, for example, to impose smoothness on the reconstruction or to weight the reconstruction support. If C is the
identity operator, E is a bound on the norm of the reconstruction. We combine the constraints quadratically and minimize the

functional

||g-Af‘||zG+ BHCf‘H}z:

where B = e2/E2. Note that smaller values of {3 are equivalent to demanding greater fidelity between the reconstruction and the
data; greater values place more emphasis on the property of the reconstruction associated with C. In the present discussion we
shall take C=1. The minimizer fg can then be expressed in either of the forms

fp = (A*A + BNt A%g
or 4)
fp = A¥ (AA¥+ pn-lg

where A* is the operator adjoint to A. The inverses of the bracketed operators will always exist, since the eigenvalues of the
symmetric operators A¥A and AA* are non-negative. The operator, the image and the reconstruction will consist in practice
of finite arrays and equation (4) becomes a matrix equation.

3. SUB-PIXEL RESOLUTION FROM MULTIPLE DEFOCUSSED IMAGES

We can state the deconvolution problem in the more general case where we are given a set of R differing noisy images of the
same object over the same pixel array.

Then the rth image consists of the vector of pixel outputs given by the equation
g = A f+n o)

where n(® represents some additive noise vector. (Other forms of noise can be accommodated by appropriate
modifications of equations (4) and (5), but we shall not address this question here.) We are required to estimate f from the
set {g®, r=1,2,-,R}.

We obtain the solution by assembling the image set into one composite image, and the corresponding matrices of integrated psf
samples a®) into a single imaging matrix. The regularized solution is then again given by equation (4). The appropriate value
for the reglflarization parameter B, which is closely related to the signal-to-noise ratio in the data, can be estimated in several
ways; for example, by the method of weighted cross-validation [3].

The image set required to achieve sub-pixel resolution can be derived by various means. Stark and Oskoui [4] discuss an
object reconstruction technique which uses a set of images differing from one another by rotation or lateral translation of the
pixel array. It is evident that acquiring a sequence of data sets by lateral displacement of the detector (or image) through some
fraction of a pixel at each step allows one to sample the image as finely as is desired. (For the two-dimensional image, the
displacements can be in any direction.) Rotational displacement similarly permits arbitrarily fine sampling. They consider the
specific case in which the system psf is much smaller than a pixel, so that resolution in the data is governed almost completely
by pixel integration rather than the optical properties of the system.

An alternative method, which we shall adopt, is to use an image set obtained with differing point-spread functions. These
could be generated by separate optical systems, or conceivably at different wavelengths. The system psf can also be
conveniently altered by varying the degree of defocus; implementations of this method could depend on a single detector
translated into the chosen planes of defocus, or a system of beamsplitters and detector arrays in appropriate locations.

If the reconstruction procedure is to be effective, the various images must contain significantly different information, which

implies that the point spread functions must differ appreciably over the scale of a pixel. We shall assume that the images are
formed on the same array, or arrays with identical characteristics, and that the object field is spatially and, if necessary,
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temporally invariant from one image to another. We shall also assume that the point spread functions are accurately known
and, for the purposes of the algorithm used later, that the images are formed from incoherent radiation. We do not require that
any of the point spread functions are much smaller than a pixel; for the illustration presented below, the psf at focus is about
half the size of a pixel. In a practical implementation, the images would not be centered on the pixel arrays in exactly the same
way; i.c., there would be some lateral translation between the images. The effect of including lateral translations has not yet
been investigated, but one would not expect reconstruction quality to suffer under these circumstances.

4. ILLUSTRATION

To illustrate these ideas, we include some results from a numerical simulation. The object field consists of a group of delta-
function-like incoherent radiators. We shall show that from a small set of images, one at focus, the others at various stages of
defocus, object locations can be well recovered, even when several of the objects' geometrical images lie within a single pixel.
The algorithm is based on the regularized formula of equation (4); in addition, the calculation is iterated a small number of
times to enforce non-negativity on the reconstruction.

The reconstruction is made initially into a spatial region defined by the central lobe of the focussed image, but using a finer
grid. No prior assumptions are made about the locations or the number of objects within this region. For small, relatively
isolated sources, some ringing will occur in the reconstruction, with associated negative pixel values. The support is
progressively refined by eliminating these pixels at each iteration until an entirely positive reconstruction is obtained. The
smallest object space which is consistent with the image data will yield the best reconstruction, and the problem, initially
underdetermined, becomes finally an overdetermined one.

A modified form of this scheme, which would be appropriate for more extended objects, includes a weight matrix which
biasses the next iteration against those pixels with negative values. The computation is significantly slower in this case, since
the size of the reconstruction space remains constant. We also note the possibility of using a regularized form of the non-
negative least-squares algorithm of Lawson and Hanson [5]. The relative performance of this procedure, also of course
iterative, has not been fully evaluated.

In this example, the object field consists of eleven highly localized sources of equal intensity, distributed over a 3x3 block of
image pixels; see Figure 1. (It should be noted that the reconstruction grid used did not coincide with the object grid; hence the
objects cannot appear as single-pixel "points" in the reconstruction.) The central lobe of the system psf was about half the
width of a pixel. Four independent images containing equal energy were generated over a 7x7 block of pixels, the first
corresponding to a focussed system, the others at various stages of defocus. A method was devised for choosing defocus
conditions with significantly different information content. Starting with the focussed image, with associated imaging matrix
A, we wish to find a defocussed image whose imaging matrix A, is as independent as possible from A, The criterion used
for this purpose was the magnitude of the condition number (the ratio of the largest to the smallest singular values) of the
matrix formed from the center columns of Agand A;. The range of defocus over which the search was made was from 0 to 4
waves. The combination selected was that possessing the smallest condition number. Knowing Ag and Ay, A, was
determined, and finally A;. The merit functions (reciprocals of condition numbers) calculated for combinations of two, three
and four defocus levels are shown in Figure 2. Note that a zero occurs whenever the variable degree of defocus coincides with
that corresponding to one of the other imaging matrices; then the composite matrix is singular and its condition number
bcomes unbounded. The degrees of defocus chosen for the four images in this case were of magnitude 0, 0.8, 1.6 and 2.4
waves. The corresponding images are shown in Figures 3-6. The only readily-identifiable feature in the focussed image is that
the central pixel is brighter than the surrounding ones.

Reconstructions were performed over the region defined by the central block of 3x3 pixels, with sampling seven times as fine
as that in the data. Thus the reconstruction space initially consisted of 441 points, while the four images provided a total of
196 data points. The reconstructions obtained when each of the images was corrupted by additive Gaussian noise with
standard deviation equal to 1% of the mean pixel content is shown in Figure 7. All of the objects are located close to their true
subpixel positions. Figure 8 shows the result obtained when the noise level is increased to 5%. The reconstruction is still
generally accurate, although there is now some distortion in object location and one or two small artifacts have begun to
appear. A signal-to-noise ratio can be defined as the ratio for each image of the sum, on a pixel-by-pixel basis, of the signal
power to the sum of the noise power. At the 5% level, this quantity varied between 33 and 28 dB. This example was designed
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to be reasonably challenging, and spreading the objects further apart, or reducing their number, considerably increases the
algorithm's robustness against noise.

5. CONCLUSIONS

A method for recovering detail at the sub-pixel level from a small set of images in various stages of defocus has been discussed
and demonstrated, using an algorithm which incorporates regularization to counter the destabilizing effects of noise. The
iterative version of this algorithm, which permits the inclusion of a non-negativity constraint, is particularly effective at
recovering accurate object support estimates. It is therefore an appropriate technique to use when it is known, a priori, that the
object field consists largely of small well-separated targets. The sensitivity to noise of the method deserves more detailed
investigation. A quantitative comparison of its performance with methods which make use of laterally translated or rotated
image sets would also be of considerable interest. In practice there would inevitably be some lateral shift between images,
even if they are formed on the same array, and a hybrid scheme might prove to be the most robust in the presence of noise.
Ultimately, of course, the performance of any restoration algorithm must be limited by the information content of the image
set. What should be sought, therefore, is the encoding scheme which most efficiently exploits the total information carried by
the incident radiation.
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ABSTRACT

A new algorithm for the restoration of extended images, the Regularized Pseudoinverse Deconvolution (RAPID)
algorithm, is proposed. The algorithm consists of expanding the regularized pseudoinverse of the imaging operator
into a sequence of terms which can be easily implemented using Fourier processing techniques. The first term of the
expansion is closely related to generalized Wiener filtering if the point spread function is shift-invariant. The other
terms in the expansion are correction terms which are small when the point spread function is shift-invariant, as is the
case with many imaging systems. Even when the point spread function of the imaging system is space-variant, such as
with a partially obscured imaging system or a system with severe aberrations, the correction terms are both few in
number and easily implemented.

1. INTRODUCTION

In the absence of any other degrading effects, the performance of an optical system is ultimately restricted by
diffraction. The finite extent of the entrance pupil imposes a fundamental upper limit on the system’s spatial frequency
response. The image quality of most operational systems will not, however, approach this theoretical limit very closely.
It is possible that the design or construction will be flawed, as in the case of the Hubble Space Telescope, through
defective manufacture, assembly or quality assurance procedures. In addition, aging of components will almost
certainly compromise sensor performance at some stage in its lifetime, and, as in spaccborne operation, replacement
may not be a simple task. The detector itself may impose limitations; for example, where a CCD array is used,
information is lost in the inter-pixel areas, and image energy is integrated over the active area of cach pixel. Other
degrading factors will include defective pixels, noise in the CCD array and electronic subsystems, and a possibly
obtrusive background. The methods of image restoration considered here were originally aimed at achieving
performance beyond the diffraction limit 1, but are in fact capable of compensating simultancously or separately for
aberrations induced by the optical components and for the limitations of the detector. They arc inherently robust and
possess valuable noise-suppressing propertics.
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The assumption is made that the overall effect of the optics can be described as a possibly time- and shift-variant
blurring of the image due to diffraction and aberrations. Thus, at any instant of time, the point spread function may
change across the sensor field-of-view. It can be assumed, however, that at any given point in the image the point
spread function is effectively determined by its spatial location and is time-invariant over the integration time of the
sensor and then undergoes a change at a later time. This is the case with the Hubble Space Telescope. It will be
assumed that the set of point spread functions is known or can be measured. For the Hubble wide-field planetary
camera there are two primary components to the point spread function; one due to diffraction by the aperture
obstructions and the other due to spherical aberration. The point spread function is observed to be locally shift-
invariant, and the image can be considered to be created by the summation across the entire field-of-view of the
segmented set of localized point spread functions convolved with objects in the corresponding parts of the field.

However, for a simple refracting telescope designed for observation of extended objects, the aberrations causing
image degradation can be highly space-variant. For an extended object, image segmentation introduces undesirable
edge effects at the block boundaries when locally shift-invariant approximations of the globally shift-variant point
spread function are used to process the separate blocks. In addition, post processing interpolation or iteration is
required to smooth the block boundaries in the final composite image 2 In the approach proposed in this paper, the
point spread function is allowed to vary continuously over the whole image and a special decomposition of the image
reconstruction operator is performed which permits Fourier techniques to be used to process the entire image.

The overall optical system imaging equation can be written as a Fredholm integral equation of the first kind.
Solutions to ill-posed problems of this type are known to be numerically unstable 34 Additionally, it is anticipated that
the image will be spatially sampled by a solid-state sensor which will introduce spatial integration, discretization and
associated noise processes. Thus, after scanning the image into a vector, the integral representing the continuous image
can be rewritten as a matrix expression. In general, the presence of the sensor noise takes the measured image vector
out of the span of the columns of the kernel matrix, which is typically highly ill-conditioned. Thus, when it is desired to
estimate what the image would have been in the absence of aberrations or with less diffraction than the instrument can
provide, techniques derived from regularization theory are required to restore stability to the reconstruction. By
introducing a suitable error criterion (based on, e.g., a vector norm), images can be constructed which are, in terms of
the chosen criterion, closer to the undistorted geometrical image of the object than the detected image data.

To the extent permitted by the noise in the image, in-band effects can usually be removed by some form of
pseudoinverse filter 5. However, detector pixellation and the finite aperture of any system set resolution limits not so
easily overcome, and a method for achieving spectral extrapolation has to be devised. The spatial spectrum of the
object is the Fourier transform of its amplitude, in the coherent case, or its intensity, in the incoherent case. If the object
is known to be of finite extent, its Fourier transform is an analytic function, and the out-of-band part of the spectrum
can in principle be fully recovered by analytic continuation 6 of the image spectrum after removal of any in-band
distortion. The inverse Fourier transform of this extended spectrum would then yield a perfect image of the original
object. Equivalently, one could attempt to solve directly the equation describing the imaging process. This, however,
involves the inversion of an ill-conditioned matrix, and the restoration process is intrinsically unstable, even small
amounts of noise rendering the results meaningless. These difficulties may be surmounted by applying the methods of
regularization theory 7, developed to deal with ill-posed problems of this type; the solution is derived by means of a
constrained least-squares procedure in which a regularization parameter plays an essential role. Stability in the
restored image, which is computed via the regularized pseudoinverse of the imaging matrix, is controlled by this
parameter. Its optimal value depends on the signal-to-noise ratio in the data.




2. NATURE OF THE PROBLEM
We wish to estimate the object f from animage g, given that
§ = Af+r e

where A is the imaging operator and 7 represents the corrupting effect of additive noise. For clarity in the analysis,
we consider the one-dimensional case with the operator A given in integral form by

b
(Af) (y) = J- Ax,y) f(x)dx, c<y<d. @)

a

In the absence of noise, Eq.(1) becomes a Fredholm equation of the first kind, in which the unknown function appears
only under the integral sign. We can identify the sources of difficulty in solving this equation in the presence of noise or

other perturbations (such as computer round-off error) by means of a singular function analysis 8,

We expand the kernel of the integral in terms of the singular functions U (x) and v, (y), orthonormal systems in
object and image spaces respectively, and the singular values G

Axy) = Zdi u; (x) v, (y). (3)
i=1
The object and image can be expanded in the forms
f = Y g @
i=1
$W = Y 8 oW )
i=1

where the coefficients are related to f(x) and g(y) by the integral formulae

b
f; = f(x)u; (x)dx (6)
and Ja
~]
;=1 sWv;wmdy. )
o €

In the noiseless case (r = 0), we find from Egs. (2) and (6)

oo

(AD @) = Y o, f 7). ®)
i=1




It follows, using Egs.(5) and (8), that

& = 9; fi ®
and hence

o0

&
fo =Y — u. (2. (10)
i;ci l

Thus the object function can in principle be perfectly reconstructed from the set {g.} of image coefficients.

Now consider the effects of noise. By expanding 7 (y) in terms of the v, (y) , wecan derive the contribution of
the noise to the new image coefficients:

gi=0fi +1p an
The estimate of f(x) is now
Y.
Fx) = fx) + ZEI u, (). (12)
i=1"

Image formation is characteristically described by an integral transform of convolution type, ie, A is a

convolution operator. Its singular-value spectrum typically decays asymptotically at an exponential rate . Since the 7

will in general decrease less quickly, the sum in Eq.(12) will be divergent and no bound will exist for the ‘distance’ (in

" the sense of some appropriate metric) between the true object and the reconstruction. The effect of the noise on the

reconstructed image is a manifestation of the fact that convolution is a strongly smoothing process - closely similar

images can correspond to widely differing objects. Thus image restoration is an ill-posed problem, small perturbations
in the data causing large changes in the solution represented by Eq.(12).

3. THE REGULARIZED SOLUTION

710 can be exploited to convert the problem to a related well-posed one, i.e,

one for which the solution exists, is unique and depends continuously on the data. Since we shall later be concerned
with computed reconstructions, we henceforth consider the problem in its finite discretized form; thus the imaging
operator A becomes a matrix. Although strictly we should introduce new symbols, for convenience we continue to
use f, g, ax;d A to denote the discrete forms of object, image, and imaging operator. Generally fe C ", geC™ and
AeCMT

The methods of regularization theory

To regularize the problem, we shall modify A. We impose constraints 1 6n possible solutions f' by requiring that
' 2 I}
| 4f - gll <¢? (13)

where € is some suitable measure of the noise in the image, and that

| ft<e? (14)




where £ is some suitable measure of the permitted ‘signal strength” of the solution. ( || ¢ || denotes norm in the
Hilbert spaces associated with object and image.) We combine these constraints and minimize

1Af-gl 2+ Bl £ 112

where the regularization parameter  is given by

B = e2/E? . (15)
The minimum-norm solution to this constrained least-squares problem is given by

ot
fB = Ap,g (16)
where

H

1
Ag = aHaipn 4 17

We note the relationship of AE (which we shall call the regularized pseudoinverse) to A+, the Moore-Penrose

pseudoinverse 12

t - lim Al

* T as)

The inverse of (AHA + BI) always exists, since AHA is non-negative definite and the regularization parameter j
is positive. A valuc of B should be chosen which balances data fidelity against smoothness in the reconstruction.
Methods are also available for determining B from the image data themselves 18,14,

4. SINGULAR VALUE AND FOURIER DECOMPOSITIONS

It is often convenient to compute the regularized pseudoinverse via the singular value decomposition (SVD) of A:

A= usvl (19)
where 1°
Hu-=1, vHv=wH- (20)
m n
and
T = diag (01, s oos cn) , 01.2 0. 2n

The singular values {Gi} are assumed to have been arranged in descending order of magnitude

ol>62>03>...>cn. 22)

Then we find H
fp=V I U s 23)




where e

st = diag | ..., e s e |
B [ 2+ ] 24)

i

This representation is useful when the behavior of the reconstruction as a function of the regularization parameter is
being studied. Regularization can equivalently be achieved by setting B to zero, and simply truncating the singular
value series at a point which is dependent on the noise level 16,

An ab initio computation of f, via Eq.(23) requires the SVD of A followed by two matrix-vector multiplications. If
the regularized pseudoinverse can be precomputed, only one matrix-vector product is needed to generate the
reconstruction. For images of more than modest sizes, however, the computation rapidly becomes burdensome. If, for
example, f and g are 100x100, A isa 104 -by-10" matrix, and the matrix-vector product requires 10~ multiplications.
There will also be considerable storage demands. Thus, if major computational resources are not available, some
means of simplifying the calculation will be needed in many cases of practical interest.

If the matrix A were square circulant of order n (A= la, _ . 1] , subscript mod n), we could dramatically reduce
the computational burden by exploiting the fact that the Fourier transform diagonalizes a circulant 7_1f F denotes the
Fourier matrix:

1 1 1 1 ]
1 w wz w -1
1
oLl 20w L 2D w= epn/n) 25)
Jn
1 2(n-1) (n-1)2
L 1 n w . w i
then
A= FAr 26)
where
A = diag (ll, 7‘2’ Kn). 27
It follows from Eq.(16) that
H
fo=F Ag Fg (28)
where
7_;1
AE = diag | ..., —5— .. (29)
Ili +B

and Xi is the complex conjugate of )\i. We note that the singular values {Gi} and the eigenvalues {7\1.} are related by
o, = M. (30)

The operational counts for the SVD and the FFT are 0] (n3) and O (nlogn) , respectively.




5. STRUCTURE OF THE IMAGING MATRIX

Under some circumstances the imaging matrix can be readily modified to circulant form. For a shift-invariant one-
dimensional system, the image is a convolution of the point spread function and the object. If the sampling intervals in
image and reconstruction spaces are equal, the matrix A is then Toeplitz (A= [a; _.1). If, in addition, the image and
reconstruction vectors are of equal length, A can be padded to circulant form. In two dimensions, f and g are matrices
and must be mapped into vectors. The manner in which this is performed will determine the structure of A. For
column-wise mapping, for instance, again with equal sampling in image and reconstruction spaces, A becomes block-
Toeplitz with Toeplitz blocks. If the image and reconstruction matrices have the same number of elements, A can be
padded to become block-circulant with circulant blocks, and the problem is again amenable to Fourier transform
methods. In both one and two dimensions, it should be noted that the penalty associated with the expansion of A to
circulant or block-circulant form is a relaxation of the support constraint on the reconstruction, which renders the
calculation, and in particular the degree of resolution enhancement achieved, much more sensitive to noise 18 An
alternative construction in the two-dimensional case is to zero-pad f and g into larger matrices and then to use a linear
congruential scan to map the padded matrices into vectors. A then becomes a circulant matrix since the linear

congruential scan is an isomorphism between 2D convolution and 1D convolution 1,

For less structured imaging matrices (e.g., if the system is weakly space-variant) it may be asked whether
accelerated computation of the matrix-vector product is still possible. In this context, recent work on circulant
approximations to matrices of quite general form 20 appears highly relevant, and includes the following result. For any
matrix, AB say, we can write

_ T
=C,+ :E: Lx )C Gy ) 31)
m=1
where CO is a circulant matrix with the same last row as AE L(x_) is a lower triangular Toeplitz matrix with X,

as its first column, and C(y } is a circulant matrix whose ast row is Yo . The {x } and {y } may be obtained
from the truncated SVD of the cyclic displacement of AL B

AE—EAEET= EE‘%ﬂ; (32)
where E is the cyclic downshift matrix
(000...01
100...00
E=1010..00} (33)
1 000...10]

For imaging matrices with strongly Toeplitz features, o should be a small number.




6. THE REGULARIZED PSEUDOINVERSE DECONVOLUTION ALGORITHM

Consider a two-dimensional optical imaging system whose point spread function is both time- and space-
invariant. In the presence of additive noise, the imaging equation connecting the input (extended object), the output
(degraded image), and the point spread function (impulse response) is given by the following two-dimensional
convolutional integral equation

oo oo

i(x,y) = J.Jo(x’,y‘)p(x—x',y—y’)dx‘dy‘+n(x,y). (34)

—_—C0 0
In shorthand notation

i=pkko+n (35)

where o(x,y) represents the extended object, i(x,y) the degraded image, p(x,y) the point spread function, and n(xy) the
noise. It is assumed that the noise is independent of position in the image.

t21

The discrete version of Eq.(34) can, of course, be cast“* into the following vector-matrix form

g = Af+r. (36)

When, in particular, f, g, and r represent the one-dimensional column vectors formed by stacking the rows or columns
of the discretized versions of the input o(x,y), output i(x,y), and the noise n(x,y), respectively, the two-dimensional
imaging matrix A is block-Toeplitz with Toeplitz blocks. It can be shown, using known results 22 that the regularized
pseudoinverse A% is block-persymmetric with persymmetric blocks. The inverse of a Toeplitz matrix is persymmetric,
and persymmetric matrices obtained by inverting Toeplitz matrices have much more Toeplitz-like structure than
general persymmetric matrices. In particular, their displacement rank is the same as that of the parent-Toeplitz
matrix?> 24, Displacement rank, it should be noted, is a quantitative measure of the closeness of a given matnx to being
Toeplitz. In one dimension, the displacement rank of a Toeplitz matrix is <2, and the displacement rank of AB is <4.

In the early stages of this investigation, one of the authors (R.P.B.) noted that for a variety of point spread functions
being studied the corresponding computer-generated regularized pseudoinverse matrices appeared to have banded
block-Toeplitz structure. He considered the implication of this observation. In particular, if a space-invariant point
spread function used in a two-dimensional linear convolutional imaging equation leads to a block-Toeplitz imaging
matrix with Toeplitz blocks, then the converse must also be true. That is, given a block-Toeplitz imaging matrix
containing Toeplitz blocks, then the corresponding space-invariant point spread function which gave rise to this
imaging matrix could be easily ascertained. This implies that from the regularized pseudoinverse an inverse point
spread function dg (x,y) could be constructed which could be used to process the image i(x,y) and form an estimate
6[3 (x,y) of the original object. This two-dimensional linear convolution technique is summarized by the equation

6B = dB**i. 37)




The technique was tested on a digital computer with encouraging results. Further experimental investigations indicate
that results obtained with this Regularized Pseudoinverse Deconvolution (RAPID) algorithm are comparable in
quality to those obtained using parametric Wiener filtering. An error analysis is given in Appendix A. Results using
degraded images processed with both the RAPID algorithm and parametric Wiener filtering are presented in section 8.

7. DECONVOLUTION VIA WIENER FILTERING

Wiener filtering 21 js a well-known technique for processing images degraded and corrupted by noise as described
by Eq.(34). From a knowledge of the point spread function p(x,y) characterizing the optical imaging system, it is
possible to compute the corresponding optical transfer function ﬁ(fx, fy) using the two-dimensional Fourier
transform

ﬁ(fx,fy) = jjp(x, y)exp[—i21t(xfx+yfy)]dxdy. (38)

—_— 00 —0Q

From the optical transfer function and knowledge of the power spectra of object SO ( fx’ fy) and noise Sn ( fx’ fy) , the
parametric Wiener filter can be constructed, namely

p(f.f |2
p (f, fy | | )

wy(f . f) =
vfefy 5, oty

] - 2
Pty Dﬂfx’fy)\ s, 0ty

|

When vy = 1, Eq.(39) reduces simply to the Wiener filter. If y is variable we refer to this as the parametric Wiener filter.
In the absence of noise, either form of the Wiener filter reduces to the ideal inverse filter. When the power spectra are
not known, which is often the case in practice, Eq.(39) can be approximated by

. Pt
Wy (fpf) =~ lfylz.
Pl [P F £ ]

(40)

From the Wiener filter, using either Egs.(39) or (40), an inverse point spread function wy(x, y) can be constructed
using the two-dimensional inverse Fourier transform. That is,

oo o0

wy(x, y) = jJwY(fx,fy)exp[+i2n(xfx+yfy)]dfxdfy. 4n

—00—00

With the inverse point spread function given by Eq.(41), an estimate 6Y(x, y) of the object can be computed using
the two-dimensional linear convolutional equation

b, = ; 42
O wy‘k*z 42)

where, again, i(x,y) is the degraded image.




8. RESULTS
Preliminary results obtained using the RAPID algorithm are presented in this section. For purposes of comparison,

results obtained using the parametric Wiener filter algorithm are also included. The optical system considered for these
studies was a simple spherical converging lens as shown in Fig. 1.

Point Source

Object Plane

Spherical Converging Lens

Image Plane

CCD Array

Figure 1. A Simple Spherical Converging Lens Imaging System

The object and image planes are coplanar and orthogonal to the optical axis of the lens. An arbitrary point source
located in the object plane gives rise to an intensity distribution (the point spread function) in the image plane. A
charge-coupled device (CCD), for example, can be used to measure the point spread function. A ray-trace program was
used in the synthesis of four different point spread functions dominated by spherical aberration (Fig. 2), coma (Fig. 3),
astigmatism (Fig. 4), and defocus (Fig. 5). The object plane distance (mm), image plane distance (mm), focal length
(mm), F-number, tangential field-angle (deg.), and sagittal field-angle (deg.) associated with each of these four figures
are summarized in Table 1. The same CCD model was used in all simulations. The array consisted of a 31-by-31 planar
arrangement of square detectors measuring 0.01 mm on a side with a center-to-center spacing of 0.01 mm. Each point
spread function was obtained by tracing 20,000 rays.
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Table 1

Spherical Aberration Coma Astigmatism Defocus
Object plane distance 48.6 48.6 48.6 48.6
Image plane distance 52.0 52.0 50.4 51.0
Focal length 243 243 243 243
F-number 4.80 5.70 5.70 4.00
Tangential field-angle 0.00 2.87 591 0.00
Sagittal field-angle 0.00 2.87 0.00 0.00
.

On the top line, center diagram, of Figs. 2 through 5 are mesh plots of the four point spread functions considered.
Each point spread function p(x,y) is represented by a 31-by-31 matrix. The ideal extended object o(x,y) used in this
analysis was a 256-by-256 matrix which is displayed as an 8-bit gray-level diagram in the upper-left hand corner of
each of these figures. Performing a two-dimensional convolution, see Eq. (35), of the extended object with the point
spread function (in the absence of noise) yields a 286-by-286 degraded image i(x,y) of which the central 256-by-256
portion of the degraded image is shown in the upper-right hand corner of each of these figures. The full 286-by-286
matrix is used, however, in subsequent image processing computations.

On line two of each of the four figures are mesh plots of the inverse point spread functions (31-by-31 matrices)
dB(x, y) (left-diagram) and w. (x,y) (right-diagram) obtained using the RAPID and Wiener filter algorithms,
respectively. Performing a two-dimensional convolution of the point spread function p(x,y) with each of the inverse
point spread functions dp (x,y) and wY(x, y) yields processed point spread functions (61-by-61 matrices). The
central 31-by-31 portions of these processed point spread functions are shown as mesh plots on line three (left- and
right-diagrams, respectively). For purposes of comparison, a 31-by-31 null-array with a single non-zero entry for the
center pixel (Delta) is also displayed on line three, center diagram.

The values of the regularization parameters (B and y) which gave rise to the best processed point sEread functions,
judged visually, for this analysis are: fherical aberration (0 and0), coma (3x10 “and1x10 ), astigmatism
(2x10—3and 251072 ), and defocus (5x10 "and 1x10—2). These same regularization parameter values were used in
computing the object estimates dg (x,y) and ﬁY(x, y) using Egs. (37) and (42), respectively. These object estimates
(316-by-316 processed images) are displayed as gray-level diagrams on the bottom-line of each of the four figures.
Only the central 256-by-256 portions of the processed images are shown.

The results presented in Figs. 2 through 5 were based on studies using synthesized point spread functions. We
were fortunate to obtain real digitized degraded images of the planet Saturn taken with the wide-field planetary
camera of the Hubble Space Telescope. The upper diagram in Fig. 6 shows a 400-by-250 degraded (unprocessed) image
of the planet Saturn. The second line in Fig. 6 shows two 31-by-31 degraded images of different stars (called star #1 and
star #2) also taken with the wide-field planetary camera. The RAPID algorithm was used to process the degraded
image of Saturn using the two star images as point spread functions characterizing the degradation process. In
particular, star #1 image was used as the input point spread function. Both star #1 and star #2 images were first
processed using the inverse point spread function obtained using the star #1 image only. The regularization parameter,
B, selected was the one which gave rise to processed star images of equal quality, based on a minimum entropy
criterion. This same inverse point spread function was then used, via Eq.(35), to process the degraded Saturn image.
The size of the reconstructed image was 430-by-280. The central 400-by-250 portion of this reconstruction is shown in
the lower diagram of Fig. 6.
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Figure 2. Point Spread Function Dominated by Spherical Aberration
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Figure 3. Point Spread Function Dominated by Coma
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Figure 4. Point Spread Function Dominated by Astigmatism
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Unprocessed Saturn Image

Star #1 Image Star #2 Image

Processed Saturn Image

Figure 6. Hubble Space Telescope Imagery
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9. CONCLUSIONS

A new algorithm, the Regularized Pseudoinverse Deconvolution (RAPID) algorithm, has been developed and has
been shown to be equivalent in performance to Wiener filtering for shift-invariant point spread functions. The
algorithm can be implemented either by direct convolution or indirectly using Fast Fourier Transform (FFT)
techniques. The advantage of this approach is that, through the use of linear congruential scanning and the application
of the circulant expansion of equation (31), regularized reconstruction methods can be applied to extended images
degraded by shift-variant point spread functions.
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APPENDIX A - TRADEOFFS BETWEEN ACCURACY AND SPEED

In this appendix we examine the RAPID reconstruction scheme in the continuous domain. An exEression for the
. . : 2, .
error displays a compromise between accuracy and speed. Let A denote the convolution operator on L™ (R%) :

Af(x) = (akf) (x) = ja(x—y)f(y)dm(y)-
R2

Let " denote the two-dimensional Fourier transform and let M, denote the multiplication operator: Mﬁ(p = 4¢. As

a
is well-known (see reference Al below), the Fourier transform diagonalizes the convolution operator:

A—]A A= M[2 ,with [[Afl = |la]|_, . In this formalism, the regularization operator satisfies:

A=1 4+ A
A =M .
2 1«
P (la*+ 8y 1

The RAPID operator is obtained by determining the regularization pseudoinverse and then restricting it to a region
near the origin. Introduce the associated convolution operator

Afx) = J (wpa) (x=y) f(y)dm(y),
R2

where w, denotes the boxcar window: wy (x) = 1if xe [=b, b] x [-b, b], zero otherwise. The regularization
operator for AB is

=M .
w, * (|&|2+Bf15

Then the error between the regularization operator and the RAPID operator is

+— + - E _ 5
15l H|‘|2+B ey

o0

As b tends to infinity, the error tends to zero. However, a large value for b corresponds to an increased computational
Joad. Thus, a trade off must be made between speed and accuracy. In addition, the error bound also indicates that a
different window (such as a square Hamming) might improve the accuracy of the regularization scheme.

Al. N. Young, An Introduction to Hilbert Space, Cambridge University Press, 1988.




